Measures of Dispersion

ф

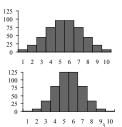
Greg C Elvers, Ph.D.

Definition

- ⊕ Measures of dispersion are descriptive statistics that describe how similar a set of scores are to each other
 - the more similar the scores are to each other, the lower the measure of dispersion will be
 - the less similar the scores are to each other, the higher the measure of dispersion will be
 - ⁽²⁾ In general, the more spread out a distribution is, the larger the measure of dispersion will be

Measures of Dispersion

- Which of the distributions of scores has the larger dispersion?
- The upper distribution has more dispersion because the scores are more spread out
 That is, they are less similar to each other



Measures of Dispersion

- There are three main measures of dispersion:
 - The range
 - The semi-interquartile range (SIR)
 - Deviation Variance / standard deviation

The Range

- \oplus The *range* is defined as the difference between the largest score in the set of data and the smallest score in the set of data, X_L X_S
- \oplus What is the range of the following data: 4 8 1 6 6 2 9 3 6 9
- The largest score (X_L) is 9; the smallest score (X_S) is 1; the range is $X_L - X_S = 9 - 1$ = 8

When To Use the Range

The range is used when

- 🖶 you have ordinal data or
- th you are presenting your results to people with little or no knowledge of statistics
- The range is rarely used in scientific work as it is fairly insensitive
 - \oplus It depends on only two scores in the set of data, X_L and X_S
 - Two very different sets of data can have the same range:
 1 1 1 1 9 vs 1 3 5 7 9

The Semi-Interquartile Range

⇔ The semi-interquartile range (or SIR) is defined as the difference of the first and third quartiles divided by two
 ⇔ The first quartile is the 25th percentile
 ⊕ The third quartile is the 75th percentile
 ⊕ SIR = (Q₃ - Q₁) / 2

Here What is the SIR for the 2 data to the right? 4 $-5 = 25^{\text{th}}$ %tile \oplus 25 % of the scores are 6 below 5 8 ⊕ 5 is the first quartile 10 \oplus 25 % of the scores are 12 above 25 14 \oplus 25 is the third quartile 20 $\leftarrow 25 = 75^{\text{th}} \% \text{tile}$ \oplus SIR = (Q₃ - Q₁) / 2 = (25 30 -5)/2 = 108 60

SIR Example

When To Use the SIR

 The SIR is often used with skewed data as it is insensitive to the extreme scores

Variance

⊕ Variance is defined as the average of the square deviations:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

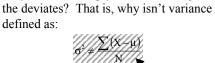
What Does the Variance Formula Mean?

⊕ First, it says to subtract the mean from each of the scores

- This difference is called a *deviate* or a *deviation* score
- The deviate tells us how far a given score is from the typical, or average, score
- # Thus, the deviate is a measure of dispersion for a given score

What Does the Variance Formula Mean?

Why can't we simply take the average of



This is not the formula for variance!

10

11

What Does the Variance Formula Mean?

- One of the definitions of the *mean* was that it always made the sum of the scores minus the mean equal to 0
- Thus, the average of the deviates must be 0 since the sum of the deviates must equal 0

What Does the Variance Formula Mean?

- Variance is the mean of the squared deviation scores
- The larger the variance is, the more the scores deviate, on average, away from the mean
- ⊕ The smaller the variance is, the less the scores deviate, on average, from the mean

Standard Deviation

14

16

 ⊕ When the deviate scores are squared in variance, their unit of measure is squared as well

- E.g. If people's weights are measured in pounds, then the variance of the weights would be expressed in pounds² (or squared pounds)
- Since squared units of measure are often awkward to deal with, the square root of variance is often used instead
 - The standard deviation is the square root of variance

Standard Deviation

 \oplus Standard deviation = $\sqrt{variance}$

⊕ Variance = standard deviation²

Computational Formula

When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional formula:

$$\sigma^{2} = \frac{\sum X^{2} - \frac{\left(\sum X\right)^{2}}{N}}{N} = \frac{\sum \left(X - \mu\right)^{2}}{N}$$

 $\oplus \ \sigma^2$ is the population variance, X is a score, μ is the population mean, and N is the number of scores $\ ^{17}$

Computational Formula Example

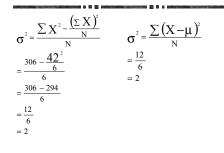
No. 10. Construction of the second			An 250 Strates of College
Х	X^2	Χ-μ	$(X-\mu)^2$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma = 42$	$\Sigma = 306$	$\Sigma = 0$	$\Sigma = 12$

18

19

20

Computational Formula Example

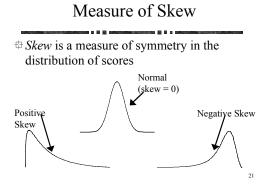


Variance of a Sample

Because the sample mean is not a perfect estimate of the population mean, the formula for the variance of a sample is slightly different from the formula for the variance of a population:

$$s^{2} = \frac{\sum \left(X - \overline{X}\right)}{N - 1}$$

 \oplus s² is the sample variance, X is a score, \overline{X} is the sample mean, and N is the number of scores



Measure of Skew

⁽¹⁾ The following formula can be used to determine skew:

Measure of Skew

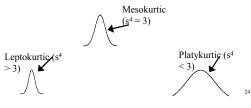
22

23

- \oplus If s³ < 0, then the distribution has a negative skew
- \oplus If $s^3 > 0$ then the distribution has a positive skew
- $rac{1}{4}$ If $s^3 = 0$ then the distribution is symmetrical
- ⊕ The more different s³ is from 0, the greater the skew in the distribution

Kurtosis (Not Related to Halitosis)

⊕ Kurtosis measures whether the scores are spread out more or less than they would be in a normal (Gaussian) distribution

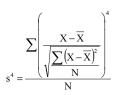


Kurtosis

- When the distribution is normally distributed, its kurtosis equals 3 and it is said to be *mesokurtic*
- When the distribution is less spread out than normal, its kurtosis is greater than 3 and it is said to be *leptokurtic*
- When the distribution is more spread out than normal, its kurtosis is less than 3 and it is said to be *platykurtic* 25

Measure of Kurtosis

⇔ The measure of kurtosis is given by:



26

27

Collectively, the variance (s²), skew (s³), and kurtosis (s⁴) describe the shape of the distribution