Statistical Inference

ф

母

Greg C Elvers

Why Use Statistical Inference

- Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used
- But our sample may not be representative of the population
- Inferential statistics allow us to decide if our sample results are probably true for the population
- Inferential statistics also allow us to decide if a treatment probably had an effect

Point Estimates

- One of our fundamental questions is: "How well does our sample statistic estimate the value of the population parameter?"
- Equivalently, we may ask "Is our *point* estimate good?"
 - \oplus A *point estimate* is a statistic (e.g. \overline{X}) that is calculated from sample data in order to estimate the value of the population parameter (e.g. μ)

3

Point Estimates

- ⊕ What makes a point estimate a good?
- ⊕ First, we must define "good"
 - # A good estimate is one that is close to the actual value
 - What statistic is used to calculate how close a value is to another?
 - ${}^{\oplus} A$ difference score, or deviate score $(\overline{X}$ $\mu)$
 - What statistic should we use to measure the average "goodness?"
 © Standard deviation

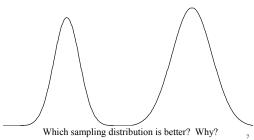
Sampling Distribution

- Draw a sample from the
- population
- Calculate the point estimate
- Repeat the previous two steps many times
- Draw a frequency distribution of the point estimates
- That distribution is called a sampling distribution

Standard Error of the Mean

- The *standard error of the mean* is the standard deviation of the sampling distribution
- Thus, it is measure of how good our point estimate is likely to be
- \oplus The symbol $s_{\overline{X}}$ represents the standard error of the mean

Which Sampling Distribution Is Better?



Factors Influencing $s_{\overline{X}}$

⊕ What influences the size of the standard error of the mean?

- That is, what can you do to make the sample mean closer to the population mean (on average)?
- Increase sample size!

A sample mean based on a single observation will not be as accurate as a sample mean based on 10 or 100 observations

Standard Error of the Mean

The standard error of the mean can be estimated from the standard deviation of the sample:

$$\mathbf{S}_{\overline{\mathbf{X}}} = \frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}}$$

Central Limit Theorem

- The central limit theorem states that the shape of a sampling distribution will be normal (or Gaussian) as long as the sample size is sufficiently large
- ⁽¹⁾ The mean of the sampling distribution will equal the mean of the sample
- The standard deviation of the sampling distribution (I.e. the standard error of the mean) will equal the standard deviation of the samples divided by the \sqrt{n} n

Confidence Intervals

- How confident are we in our point estimate of the population mean?
 - The population mean almost always is larger or smaller than the sample mean
- Given the sample mean and standard deviation, we can infer an interval, or range of scores, that probably contain the population mean
- Definition This interval is called the *confidence interval*.

Confidence Intervals

- Because of the central limit theorem, the sampling distribution of means is normally distributed
- We can use the table of areas under the normal curve to find a range of numbers that probably contain the population mean

Confidence Intervals

- ⊕ The area under the normal curve between zscores of -1 and +1 is .68
- \oplus Thus, the 68% confidence interval is given by $\overline{X} \pm 1$ standard deviation of the sampling distribution

⊕ E.g., $\overline{X} = 4.32 \text{ s}_{X} = .57, \text{ n} = 32$ ⊕ $\overline{X} \pm \text{s}_{X} / \sqrt{\text{n}}$ ⊕ 4.32 - .57 / $\sqrt{32}$ to 4.32 + .57 / $\sqrt{32}$

⊕ 4.22 to 4.42

Confidence Intervals

13

15

- ⊕ The area under the normal curve between z-scores of -1.96 and +1.96 is .95

 \oplus E.g., $\overline{X} = 4.32 \text{ s}_{X} = .57, n = 32$

 $\oplus \overline{X} \pm 1.96 X s_X / \sqrt{n}$

Hypothesis Testing

- # Hypothesis testing is the procedure by which we infer if two (or more) groups are different from each other
- The first step is to write the *statistical* hypotheses which are expressed in precise mathematical terms
- The statistical hypotheses always come in pairs -- the *null hypothesis* and the *alternative hypothesis*

H₀: The Null Hypothesis

```
⊕ The null hypothesis usually takes the following form:
```

 \oplus H₀: $\mu_1 = \mu_2$

- This is read as: "The null hypothesis is that the mean of condition one equals the mean of condition two"
- Notice that the null hypothesis always deals with population means and not the sample mean

H_0

⊕ The null hypothesis must contain an equal sign of some sort (=, ≥, ≤)

 \oplus Statistical tests are designed to reject H_0 , never to accept it

H₁: The Alternative Hypothesis

17

19

The alternative hypothesis usually takes the following form:

 \oplus H₁: $\mu_1 \neq \mu_2$

- This is read as: "The alternative hypothesis states that the mean of condition one does not equal the mean of condition two"
- As is true for the null, the alternative hypothesis deals with the population mean and not the sample mean

H_0 and H_1

- Together, the null and alternative hypotheses must be *mutually exclusive* and *exhaustive*
- \oplus Mutual exclusion implies that H₀ and H₁ cannot both be true at the same time
- Exhaustive implies that each of the possible outcomes of the experiment must make either H₀ or H₁ true

Directional vs Non-Directional Hypotheses

- The hypotheses we have been talking about are called *non-directional* hypotheses because they do not specify how the means should differ
 - th That is, they do not say that the mean of condition 1 should be larger than the mean of condition 2
 - \oplus They only state that the means should differ
- Non-directional hypotheses are sometimes called *two-tailed tests* ²⁰

Directional vs Non-Diretional Hypotheses

 Directional hypotheses include an ordinal relation between the means
 That is, they state that one mean should be

larger than the other mean

- \oplus For directional hypotheses, the H₀ and H₁ are written as:
- \oplus H₀: $\mu_1 \le \mu_2$
- \oplus H₁: $\mu_1 > \mu_2$
- Directional hypotheses are sometimes
 called *one-tailed tests*

Converting Word Hypotheses into Statistical Hypotheses

21

22

23

Convert the following hypothesis into statistical hypotheses:

Frequently occurring words are easier to recall than words that occur infrequently

 Is this hypothesis directional or nondirectional?
 Directional

Converting Word Hypotheses into Statistical Hypotheses

Write the relation that we hope to demonstrate. This will be the alternative hypothesis:

 \oplus H₁: $\mu_{\text{frequent}} > \mu_{\text{infrequent}}$

Write a hypothesis that covers all possibilities that are not covered by the alternative hypothesis. This will be H₀:

 \oplus H₀: $\mu_{\text{frequent}} \leq \mu_{\text{infrequent}}$

Converting Word Hypotheses into Statistical Hypotheses

Convert the following hypotheses into statistical hypotheses:

People who eat breakfast will run a race faster or slower than those who do not eat breakfast

People who own cats will live longer than
 those who do not own cats

People who earn an A in statistics are more likely to be admitted to graduate school than those who do not earn an A

Inferential Reasoning

- Statistical inference can never tell us if two means are equal; it can only tell us if the two means are not equal
- ⊕ Why?
- Statistical inference never proves that two means are not equal; it only tells us if they probably are not equal

Inferential Reasoning

25

26

27

- If two sample means are different from each other, does that imply that the null hypothesis is false?
- ⊕NO! Why?
- Sample means are point estimates of the population mean; thus, they are not precise predictors of the population and they change from sample to sample

Inferential Reasoning

- How different do two sample means need to be before we are willing to state that the population means are probably different?
- ⊕ The answer depends on the distribution of sampling means
 - [©] The more variable the sampling distribution is, the more different the sample means need to be

Inferential Reasoning

- \oplus The answer also depends on how willing you are to make an error and incorrectly reject H₀ when, in fact, H₀ is true
 - The less willing you are to make such an error, then the larger the difference needs to be
- \oplus This type of error is called a *Type-I* or an α error

- th The Type-I or α error occurs when you reject H_0 when in fact H_0 is true
- \oplus We are free to decide how likely we want to be in making an α error
- \oplus The probability of making an α error is given by α
- \oplus Psychologists usually set α to either .05 or .01

29

30

31

Inferential Reasoning

- \oplus That is, an inferential statistic has told us that the probability of making an α error is less than the α value that we arbitrarily selected

Inferential Reasoning

- \oplus When we decide that H_0 is probably not true, we *reject* H_0
- \oplus If H₀ is not tenable, then H₁ is the only remaining alternative
- \oplus Technically, we never accept H₁ as true; we only reject H₀ as being likely

Inferential Reasoning

- \oplus We never accept H₀ as true either
- \oplus We only *fail to reject* H_0
- ⊕ It is always possible that the population means are different, but that the sample means are not sufficiently different

β Error (Type-II Error)

⊕ A second type of error can occur in statistical inference

 \oplus A β error or Type-II error occurs when we fail to reject H₀ when H₀ really is false

Type-I and Type-II Errors

33

⊕ Ideally, we would like to minimize both Type-I and Type-II errors

- This is not possible for a given sample size
- ^Φ When we lower the β level to minimize the probability of making a Type-II error, the α level will rise 34

Type-I and Type-II Errors

