Greg C Elvers

Probability

Inferential statistics allow us to decide if one condition of an experiment produces different results than another condition

⊕ Inferential statistics are based on the concepts of probability

⊕ Thus, probability is an essential aspect of statistics

What Is Probability?

Probabilities often deal with *events*

 ⇔ An event is something that happens
 ⇔ E.g. Rolling a 3 on a fair die is an event

The probability of an event is given by the ratio of how often that event occurs and how often all events occur

Probability of Events

 When you role a fair, 6 sided die, each of the six faces has an equal chance of coming up
 Thus, the probability of any single face

appearing is given by 1 (how often that event occurs) divided by 6 (the total number of events)

Event	p(Event)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Probability of Events

- ⇔ What is the probability of not rolling a 1?
 ⊕ There are five events that are not 1
 ⊕ There is a total of six events

Event	p(Event)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

The Addition Rule

- th The *addition rule* is used to determine the probability of two or more events occurring th E.g., what is the probability that an odd number will appear on the die?
- ⊕ For *mutually exclusive* events, the addition rule is:

p(A or B) = p(A) + p(B)

⊕ Two events are mutually exclusive when both cannot occur at the same time

The Addition Rule

- An "odd" event occurs whenever the die comes up 1, 3, or 5
- ⇔ These events are mutually exclusive
 ⇔ E.g., if it comes up 3, it cannot also be 1 or 5
 ⇔ p(1 or 3 or 5) = p(1) +

p(1 of 3 of 5) = p(1) + p(3) + p(5) = 1/6 + 1/6 + 1/6 = .5


p(Event)
1/6
1/6
1/6
1/6
1/6
1/6

The Addition Rule

 [⊕] When events are not mutually exclusive, a different addition rule must be used
 [⊕] When events are not mutually exclusive, one or more of the events can occur at the same time
 [⊕] Are the events "liking

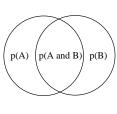
Are the events "liking cats" and "liking stats" mutually exclusive?

	Like Cats	Dislike Cats
Like Stats	4	3
Dislike Stats	2	5

The Addition Rule

analasanakararanananan a 🛙 🖉 analasana		angen waangebe	
🕆 The two events,		Like	Dislike
"liking stats" and		Cats	Cats
"liking cats" are not mutually exclusive	Like Stats	4	3
person to like statistics and either like or	Dislike Stats	2	5
dislike cats			

The Addition Rule


⊕ When events are not mutually exclusive, the addition rule is given by:

 \oplus p(A or B) = p(A) + p(B) - p(A and B)

- ⊕ p(A and B) is the probability that both event A and event B occur simultaneously
- th This formula can always be used as the addition rule because p(A and B) equals zero when the events are mutually exclusive

The Addition Rule

- ⊕ Why do we subtract p(A and B)?
- When the events are not mutually exclusive, some events that are A, are also B
- \oplus Those events are counted twice in p(A) + p(B)
- ⊕ p(A and B) removes the second counting of the events that are both A and B

The Multiplication Rule

- To determine the probability of two (or more) independent events occurring simultaneously, one uses the multiplication rule
- \oplus p(A and B) = p(A) X p(B)
- Dote: This formula can be used to solve the previous addition rule, but only if the events are independent

Independent Events

- Two events are said to be *independent* if the occurrence of one event in no way influences the occurrence of the other event
- That is, knowing something about whether one event has occurred tells you nothing about whether the other event has occurred
 - DE.g., flipping a coin twice
 - the E.g., being struck by lightning and having green eyes

The Multiplication Rule

		CONTRACTOR OF CONTRACT
Hereit What is the probability	Event	p(Event)
of rolling two dice and	1	1/6
having both show 6? $(f, g) = f(f, g)$	2	1/6
rightarrow p(6 and 6) = p(6) X p(6) =	3	1/6
$1/6 \ge 1/6 = 1/6 \ge 1/6 = 1/6 \ge 1/6 \ge 1/6 = 1/6 \ge 1/6 = 1/6 $	4	1/6
1/36	5	1/6
	6	1/6

14

13

Some Probability Problems

What is the probability of selecting a King in a single draw from a standard deck of cards?

Solution

- ⁽¹⁾ What is the probability of selecting a face card (Jack, Queen, or King) in a single draw from a deck of cards?
- Four cards are dealt from a deck with replacement. What is the probability that all four cards are aces?

Joint and Marginal Probabilities

- ⊕ A *joint probability* is the probability of two (or more) events happening together
 - ⊕ E.g. The probability that a person likes statistics and likes cats
- ⊕ A marginal probability is the probability of just one of those events
 - Definition of liking statistics

Joint and Marginal Probabilities

	uncan o R 🛛 omunametric	anteriora 👩 R a anterioranterio	
	Likes Cats (B)	Does Not Like Cats (not B)	Marginal Probability
Likes Stat (A)	3 .167	1 .056	4 .222
Does Not Like Stats (not A)	10 .556	4 .222	14 .778
Marginal Probability	13 .722	5 .278	18 17

Conditional Probability

.....

⊕ If two events are *not* independent of each other, then knowing whether one event occurred changes the probability that the other event might occur

- E.g., knowing that a person is an introvert decreases the probability that you will find the person in a social situation
- Conditional probabilities give the probability of one event given that another event has occurred

Conditional Probability

- The conditional probability of event B occurring given that event A has occurred is given by:
- \oplus p(B|A) = p(A and B) / p(A)
- The values of p(A and B) and p(A) can be easily gotten from the table of joint and marginal probabilities

What is the probability that a person likes cats given he or she likes		Likes Cats (B)	Does Not Like Cats (not B)	
statisites?	Likes Stat	3	1	4
 ⊕ p(likes cats likes stats) = p(likes cats and likes stats) / p(likes stats) ⊕ .167 / .222 = .75 	(A)	.167	.056	.222
	Does Not Like Stats (not A)	10 .556	4 .222	14 .778
	Marginal Probability	13 .722	5 .278	18

Conditional Probability

Conditional Probability

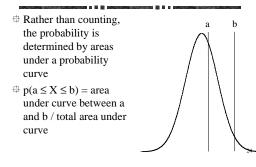
⇔ What is the probability that a person likes cats given he or she does not like statisitcs?
 ⇔ p(likes cats | dislikes stats) = p(likes cats | dislikes stats) / p(dislikes stats)
 ⊕ .556 / .778 = .714

y S		Likes Cats (B)	Does Not Like Cats (not B)		
	Likes Stat (A)	3 .167	1 .056	4 .222	
	Does Not Like Stats (not A)	10 .556	4 .222	14 .778	
	Marginal Probability	13 .722	5 .278	18	
				21	

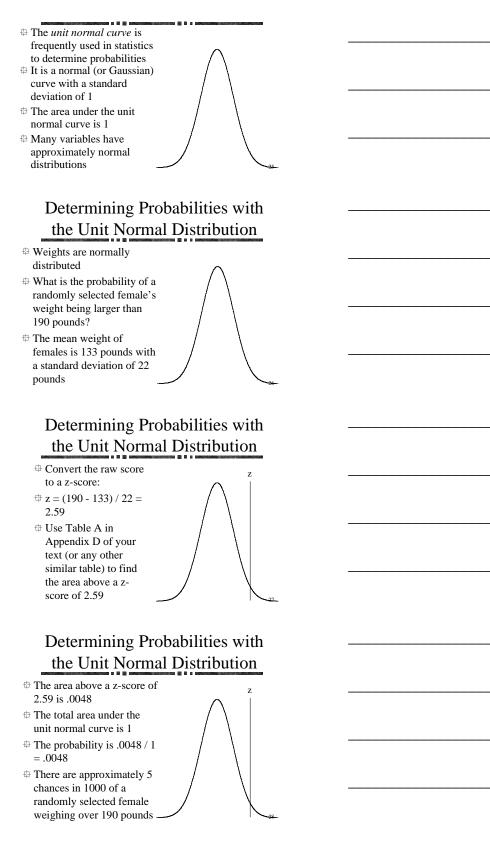
22

23

The Multiplication Rule Revisited


- The multiplication rule given before applied only to two (or more) events that were independent of each other
- ⁽¹⁾ When the event are not independent, the multiplication rule must be revised to:

 \oplus p(A and B) = p(A) X p(B | A)


Continuous Variables and Probability

- When the variables / events are continuous rather than discrete, we can no longer simply count the occurrence of the event or count the total number of events
- ⊕ The continuous nature of the variable implies that there is an infinite number of values that the variable can take on

Probability of Continuous Events

Unit Normal Curve

Probability Problems

What is the probability of a randomly selected female weighing less than 100 pounds?

- What is the probability of a randomly selected female weighing more than 150 pounds or less than 110 pounds?
- What is the probability of two randomly selected females both weighing less than 90 pounds?

Solution

Draw a King

How many kings are in a standard deck of cards?

- ⊕4
- ⊕ How many cards in a deck of cards?
 ⊕ 52

31

30

 ⊕ The probability of drawing a king from a deck is given by # kings / # cards = 4 / 52 = .076923

Draw a Face Card

⊕ There are three types of face cards: Jacks, Queens, and Kings

- To determine the probability of one or more mutually exclusive events occurring, use the addition rule

Draw a Face Card

⊕ p(Jack or Queen or King) = p(Jack) or p(Queen) or p(King)

⊕ From the previous problem, p(King) = .076923

rightarrow p(Jack) = p(Queen) = p(King)

Draw a Face Card

 Another way of looking at this problem is simply to count the number of face cards in a deck
 There are 12 face cards in a deck

34

35

33

The two answers agree

Draw Four Aces

- The card that is dealt first has no influence on which card is dealt second, third, or fourth (because the card is replaced before the next draw)
- The card that is dealt second has no influence on which card is dealt first, third, or fourth, and so on
- 17 Thus the draws are independent events

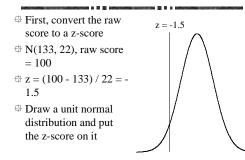

Draw Four Aces

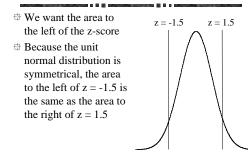
- To determine the probability of several events happening together, use the multiplication rule
- ⇔ p(Ace on first draw and Ace on second draw and Ace on third draw and Ace on fourth draw) = p(Ace on first draw) X p(Ace on second draw) X p(Ace on third draw) X p(Ace on fourth draw)

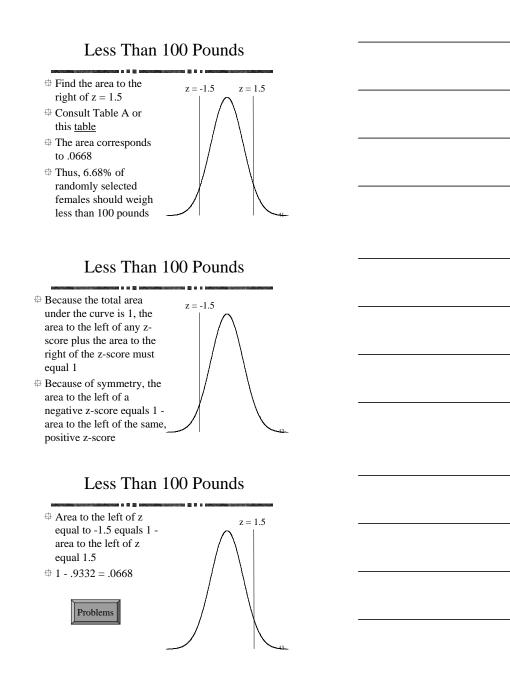
Draw Four Aces

- rightarrow p(Ace on first draw) = # of aces / # cards
- \oplus There are four aces and 52 cards in the deck
- rightarrow p(Ace on first draw) = 4 / 52 = .076923
- ⊕ The card is replaced and the deck is reshuffled

Draw Four Aces


⊕ This event would occur roughly 35 in 1,000,000 times


38

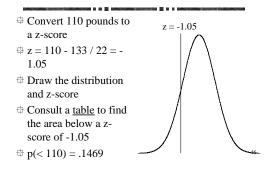

37

Less Than 100 Pounds

Less Than 100 Pounds

> 150 or < 110

1 1 1 1

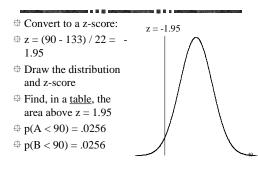

44

This problem calls for the addition rule of mutually exclusive events

- Determine the probability of a randomly selected female weighing more than 150 pounds
- Determine the probability of a randomly selected female weighing less than 110 pounds

< 110 Pounds

p(>150 or <110)


- Combine the probabilities with the addition rule:
- p(>150 or <110) = p(>150) + p(<110) =.2206 + .1469 = .3675
- Roughly 37% of randomly selected women will weigh more than 150 pounds or less than 110 pounds

Problems

Two Weighing Less than 90 Pounds

- ⊕ This is an example of the multiplication rule for independent events
- \oplus p(A < 90 and B < 90) = p(A < 90) X p(B < 90)
- Determine the probability of randomly selecting one female weighing less than 90 pounds

Combine Using Multiplication Rule

p(A < 90 and B < 90) = p(A < 90) X p(B < 90)

 $\oplus = .0256 \text{ X} .0256 = .0006554$

Only about 66 times out of 100,000 times that you randomly selected two women would you expect both to weigh less than 90 pounds.

Problems