Regression

ф

Greg C Elvers

Correlation

- The purpose of correlation is to determine if two variables are linearly related to each other
- the direction of the relation (direct or indirect) The correlation coefficient, however, does
- not tell us how the variables are related # I.e., it does not tell us how to predict the value
 - of one variable given the value of the other

Regression

- The purpose of regression is to mathematically describe the relation between the variables
- Once you can describe the relation, you can predict the value of one variable given a value of the other variable
- ⁽¹⁾ When the variables are perfectly correlated, the prediction is perfect; the less correlated the variables, the less accurate the prediction

Regression Equation

- Because correlation assumes the variables are linearly related, the mathematical relation between the variables must be the equation of a line
- \oplus Y'=slope * X + intercept
- \oplus Y' (read Y prime) is the predicted value of the Y variable
- \oplus slope is how steep the line is
- \oplus intercept is where the line crosses the Y axis when X = 0 4

Equation of a Line

- rightarrow Y' = 2 * X + 10
- What value of Y is
- predicted when the value
- of X = 5? ⊕ Y' = 2 * 5 + 10 = 20
- Because the two variables are perfectly correlated, we can exactly predict the Y value given the X value

Regression When |r| < 1.0

- When the two variables are not perfectly correlated with each other, the points in a scatterplot will not fall directly on a line
- Thus, we will not be able to accurately predict the value of one variable given the value of the other variable
- ⊕ The closer | r | is to 0, the less accurate our predictions will be

Determining Slope and Intercept when | r | < 1.0

- How do we determine the equation of the line when the data points do not fall on a line?
- ⊕ We should try to find the line that does the best job of describing the data points
- ⊕ That line is called the *line of best fit*, the *regression line*, or the *least squares line*; all three terms are synonymous

Line of Best Fit

- The line that we select as the regression line should minimize the errors that we make in our predictions
- \oplus The error in our prediction is given by:

 $\sum (Y - Y')^2$

10

11

Why Square Y - Y'?

- You may wonder why we square the difference between the observed and predicted Y values
- ⊕ The regression line (the line containing all the Y' values) is similar to the mean
- \oplus Recall that $\Sigma(X \overline{X})^2$ was smaller than if we had substituted any other number for the mean

14

15

16

🕆 That is, the mean minimizes the sum

Why Square Y - Y'?

Thus, substituting Y' for the mean will make the squared errors smaller than if any other value was substituted

How To Determine the Slope

⇔s_y

⇔r

[⊕] The slope of the regression line should be influenced by three factors:

[⇔]s_x

How To Determine the Slope

- The two standard deviations basically serve to standardize the difference in the variations of the two distributions
- \oplus The slope is proportional to the ratio: $s_y \slash s_x$
- ⊕ The next several slides assume that X and Y are perfectly correlated

17

How To Determine the Slope

How To Determine the Slope

- ⊕ The slope also depends on the correlation of the two variables
- ⊕ When the correlation is perfect, the slope is given by the ratio of the standard deviations
- When no correlation exists, the best prediction is always the mean no matter what the value of X is
- \oplus Thus, when r = 0, the slope should equal 0

20

How To Determine the Slope

- \oplus When $\mid r \mid$ is between 0 and 1, the slope should be between 0 and s_{v} / s_{x}
- \oplus The closer r is to 0, the closer the slope should be to 0
- \oplus The closer $\mid r \mid is$ to 1, the closer the slope should be $s_{y} \mid s_{x}$

 \oplus Thus, the slope is given by: slope = r * s_v / s_x

Computational Formula for Slope

21

22

23

⊕ The computational formula for the slope of the regression line is:

sl

$$ope = \frac{\sum XY - \left[\frac{(\sum X)(\sum Y)}{N}\right]}{\sum X^2 - \frac{(\sum X)^2}{N}}$$

How To Determine the Intercept

 \oplus Given that Y' = slope * X + intercept, \overline{X} , \overline{Y} , and r = 1, with a little algebra, we can solve for the intercept

 \oplus intercept = \overline{Y} - slope * \overline{X}

Types of Variation in Regression

There are three types of variation that are often mentioned when regression is discussed:

H Total variation

 \oplus Explained variation

Description Unexplained variation

Partitioning of the Variance

- When we divide the total variance into two or more sub-totals, we are *partitioning the variance*
- This concept of dividing the total variation into different categories becomes an essential aspect of one of the most important inferential statistics, the ANalysis Of VAriance (ANOVA)

29

30

Coefficient of Determination

- The coefficient of determination, r², was defined as the proportion of variation in the Y data that was explainable by variation in the X data
- \oplus This can be given by the following formula

$$\mathbf{r}^{2} = \frac{\text{explained } \mathbf{s}^{2}}{\text{total } \mathbf{s}^{2}} = \frac{\frac{\sum (\mathbf{Y}' - \mathbf{Y})}{N}}{\frac{\sum (\mathbf{Y} - \overline{\mathbf{Y}})^{2}}{N}}$$